Polymer chemistry and macromolecular engineering Fall 2024 Assignment 3

1. Consider the radical polymerization of methyl methacrylate MMA (1.5 M in toluene) at 70°C. Two polymer chemists decided to run the same polymerization using two different initiators: AIBN (system A) and benzoyl peroxide (system B). All the necessary values are given in the table below. The radical concentrations in both cases are assumed to stay constant during the polymerizations. The molecular weight of methyl methacrylate is 100.12 g/mol.

	[1]	$t_{1/2}$	[M·]	k_t	k_p
System A	4.0 · 10 ⁻⁴ M	4.8 h	1.4 · 10 ⁻⁷ M	$6.3 \cdot 10^{5} \text{ M}^{1} \text{ s}^{1}$	476 M ⁻¹ s ⁻¹
System B	6.0 · 10 ⁻⁴ M	7.3 h	1.2 · 10 ⁻⁷ M	$6.3 \cdot 10^5 \text{ M}^{\text{-1}} \text{ s}^{\text{-1}}$	476 M ⁻¹ s ⁻¹

- a) Draw the reaction schemes for the initiation, propagation and all possible termination steps of the radical polymerization of MMA (use AIBN as the initiator).
- b) Was the initiator of system A or B more efficient?
- c) What are the experimental methods to determine the initiator efficiency?
- **d)** The monomer conversion was followed by taking samples of the polymerization mixture after 1 h and 15 h. What monomer conversion values can be expected for system A?
- e) Calculate the kinetic chain length and number average molecular weight of the PMMA polymer (system A) formed at t = 0 assuming that the termination only occurs via coupling.
- 2. As shown in the reaction scheme below, vinyl acetate is polymerized in benzene at 60°C using AIBN as the initiator and carbon tetrachloride as a chain transfer agent. The initial monomer concentration is 150 g/L, initiator concentration 0.98 g/L and the solution density is 0.83 g/cm³.
 - What concentration of chain transfer agent should be used to obtain poly(vinyl acetate) with molecular weight of 15'000 g/mol (assuming termination by coupling)? Assume that chain transfer has no effect on the polymerization rate and no chain transfer to initiator occurred.

Use the following data at 60 °C

$$k_d = 8.5 \cdot 10^{-6} \frac{1}{s}$$
; $k_p = 2.34 \cdot 10^3 \frac{L}{mol \cdot s}$; $k_t = 2.9 \cdot 10^7 \text{ L/(mol \cdot s)}$; $f = 1.0$; $C_m = 2.3 \cdot 10^{-4}$; C_s (benzene) = $1.2 \cdot 10^{-4}$; C_s (CCl₄) = 1.0

Molecular weight (g/mol): vinyl acetate = 86, AIBN = 164, CCl₄ =154 and benzene = 78

- **3.** In the ATRP process acidic monomers such as acrylic acid can poison the catalyst by complexing with the ligand. Suggest a suitable controlled radical polymerization route to synthesize polyacrylic acid.
- **4.** Styrene (St) was polymerized by atom transfer radical polymerization (ATRP) using a copper(I) bromide (CuBr) catalyst, N,N,N,N,N-pentamethyldiethylenetriamine (PMDETA) as a ligand, and methyl 2-bromopropionate (MBrP) as an initiator. The initial concentrations of the monomer [M]₀ and the initiator [I]₀ used for this polymerization were 50 M and 1 M, respectively.

- a) Illustrate the ATRP mechanism for the polymerization of this monomer.
- **b)** Give the final structure of the polymer including end groups.
- c) Calculate the average molecular weight of the polymer formed at 90% monomer conversion (assuming 100% initiator efficiency). Estimate the polydispersity of the polymer. How could you experimentally determine the dispersity?
- **d)** How would you explain if the experimental M_W was found higher than the theoretical one?